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Abstract

Users of parallel machines need to have a good grasp for héw di
ferent communication patterns and styles affect the pevémice
of message-passing applications. LogGP is a simple peebca
model that reflects the most important parameters requinesksti-
mate the communication performance of parallel comput&ise
message passing interface (MPI) standard provides newrtppo
nities for developing high performance parallel and distitied ap-
plications. In this paper, we use LogGP as a conceptual fraonk
for evaluating the performance of MPI communications ormeé¢hr
platforms: Cray-Research T3D, Convex Exemplar 1600SP,aand
network of workstations (NOW).

Our objective is to identify a performance model suitable fo
MPI performance characterization and to compare the perf@ance
of MPI communications on several platforms.
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1 Introduction

Recent advances in computer and semiconductor technslogike
parallel systems widely applicable for solving real probge The
complexity of designing efficient parallel applicationsdaalgo-
rithms requires that models be used at various levels of adigin.

Csaba Andras Moritz

modeling the underlying protocol messages. The cost obpobt
messages is often small compared to the cost of user messages
thus such simplification gives acceptable prediction intobshe
cases. Furthermore, a simple model is also advantageoasseit

is platform independent, and can be used in performance asmp
isons between different platforms. In addition, exact infation
about the underlying messaging protocols is often not allfor

MPI programmers. We describe a set of communication bench-
marks and use them to extract the LogGP parameters on thake pl
forms: Cray Research T3D, Convex Exemplar 1600SP, and work-
station clusters.

Next, we present a methodology for how to model the underly-
ing protocols used, by decomposing the MPI primitives icw-|
level non-blocking communication primitives. We show hawde-
rive the communication performance for several typical M&in-
munication protocols. Incorporating details about thelengenta-
tion may be necessary for MPI communication primitive desig.

Finally, we describe how to model the performance of MPI
programs running on machines with two tiered organizatiochs
as the Convex Exemplar 1600SP. This model exposes the perfor
mance gap between inter-cluster and intra-cluster comeations
in cluster of shared memory type of machines.

The remainder of this paper is organized as follows. In $acti
2, the basic concepts and communication styles of MPI, tiggERo

Several approaches to model the communication performance Model parameters, and the hardware platforms are intreduire

of a multicomputer have been proposed in the literature [108
LogP is a simple parallel machine model that reflects the nost
portant parameters required to estimate the real perfaceafpar-
allel computers [10].LogGP [3]is an extension of LogP capty
the increased network bandwidth for long messages.

The message passing interface (MPI) standard [16, 17] pro-

vides a flexible environment for developing high performapar-
allel applications. MPl is a very flexible communicationdayro-
viding several mechanisms for point-to-point and collezttom-
munications. It provides an efficient standard to implenmeessage-
passing applications on different platforms.

In MPI, it is often possible to express the same application

communication requirement in many different ways, usirftedi
ent combination of MPI primitives, with different type ofseurce
demands. The performance implications are complex andasyt e
to understand. Information about resource usage, comationc
performance, and latency hiding opportunities are regluioehelp
MPI programmers select appropriate communication meshasi

This paper presents several approaches to model the perfor-

mance of MPI point-to-point communications. First, we use t
LogGP model directly on the MPI primitives, without exptigi
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Section 3, we describe the MPI specific model extensions g&Fo
and the extension for the two tiered architectures. In 8aati we
present MPI communication performance comparisons fathall
platforms. Section 5 concludes the paper.

2 Background

M essage Passing | nterface

The MPI standard was defined in a forum involving the active pa
ticipation of more than 40 different vendors and organagi A
very important goal of MPI is to provide a widely portable aeftl-
cient programming library without sacrificing performanc&ince
the release of the standards [16], several MPI implememisiti
have become publicly available: CHIMP from Edinburgh Paral
lel Computing Center (EPCC) [2], University of EdinburghAM
from Ohio Supercomputer Center [7]; MPICH from Argonne Na-
tional Laboratory [13]; and Unify from Mississippi State Mer-
sity [12]. All of these implementations have a similar penfiance

if compared on the same computing platform [18].

In the message-passing programming model, a program con-
sists of a set of processes, where each process performslen in
pendent computation. These processes communicate vialsenum
of communication channels. Point-to-point communicai®the
fundamental communication mode of any message passing mul-
ticomputer. This section gives a short introduction to tifecent
point-to-point communication primitives in MPI. A summanfthe
different communication styles is shown in 1. More inforinat
about MPI communication styles can be found in [18].

MPI provides different send and receive types, with différe
synchronization and resource usage semantics. The typsesfch
operation can be blocking or non-blocking with the folloggimodes:
buffered, standard, ready, and synchronous. Blocking ir tyi§*



ically means blocking the current process until resoureasifor
the operation can be reutilized. A send operation is conasttiecal
if the operation completes before a communication with aatem
process is initiated.

P = the number of processors. The model also assumes a network
with a finite capacity, e.g. if a processor attempts to senceg-m
sage that would exceed the capacity of the network, the psoce
stalls until the message can be sent. The model is asynalspno

The behavior of the standard mode is not precisely defined in i.e., processors work asynchronously and the latency experd

the MPI standard. A popular interpretation is that the sem-c
pletion be independent of the receiving process as longeas th
sufficient system buffering space; when this space is fidiskend
completion can be delayed for a matching receive.

by any message is unpredictable, but limited by the uppenddu
parameter in the absence of stalls. The maximum number of mes
sages in transmit from or to any processor is determined. hy.
Although the model primarily reflects the performance of saege-

The buffered mode buffers the outgoing message when no matctpassing systems, the authors claim its applicability farstt mem-

ing receive is posted. The operation is local even for thekihy
call. The buffer cannot be reutilized directly after the fidocking
sends. A difference between the explicit buffered mode &ed t
standard mode (in a buffered implementation) is that in theec
of the buffered mode additional buffer space can be dechaiged
special MPI function call. In a blocking buffered mode thader
can essentially continue with the next operation after tiessage
is in the buffer.

ory models based on distributed memory machines.

An extension of LogP for large messages is presented in [3],
and a new paramet@& is introduced: thé&ap per byteor the time
per byte for long messages. The reciprocaGotharacterizes the
available per processor communication bandwidth for loresm
sages.

LoGPC [5] is a new model where application specific parame-
ters are introduced to account for network and resourceecoioin

The synchronous mode requires some handshaking between theffects. LogP is quantified for low-overhead local area oeks in

sender and the receiver, thus this operation is non-locamyile-
tion of a blocking synchronous send means only that the vecei
has reached a certain point in its execution, and it is nobaaguee
for a completed communication.

[14]. The performance assessment of LogP for fast netwdek-in
faces is presented in [11]. The majority of performance mesas
ments for point-to-point MPI communications are based oa-me
suring the round-trip time or the average transfer time leefnvtwo

The ready mode send is completed only when the matching re- processes. Benchmarks like the COMMS1 and COMMS?2 in the

ceive is already posted. The behavior of this mode can befinede
if a send operation precedes a matching receive. In the ¢dbe o
Cray T3D this mode is for example equivalent with the staddar

GENESIS suite [9] have been adapted for MPI performanceieval
ation. The average transfer time is estimated by halvingtieeage
round-trip time. In addition, end-to-end bandwidth is estted by

mode. The rational behind the non-blocking modes is that-com dividing the message size by the total message latency.

pletion of the operation can be checked later, thus oveihappf
communication with computation is possible. The impleragah
of the same communication operation may vary in function eém
sage length and other factors, such as availability of nessu[9].

The main difference in presenting the communication perfor
mance in the context of LogGP is the separation of the softwar
overheads from the other aspects of the communication perfo
mance.

Different protocols could be used to implement the send-oper Hardware Platforms

ation, and Figure 1 illustrates some of the typical proteamed
in MPI implementations [9]. The T (Transfer) and TA (Trans-

We compare the MPI communication performance of three plat-
forms: Cray-research T3D, Convex Exemplar 1600SP, andsa clu

fer Acknowledge) protocols can be used when message headler a ter of workstations. On the first two of these platforms, we the
data can be accommodated within the protocol message. The RA same CHIMP MPI implementation, and on the Convex Exemplar

(Request Acknowledge Transfer), and RTA (Request Tramsfer
knowledge) protocols are used for implementing the stahdad

we use MPICH.
The Cray T3D is a distributed memory multicomputer based on

the synchronous modes when message data cannot be accomma high performance three dimensional torus topology. Itaseol

dated within the protocol message.
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R=Request, RM=Message accomodated in Request Envelope, ACK= Acknowledgement, M=Message

Protocols: T, TA, RTA, RAT

Figure 1: Different protocols used for implementing MPlden

L ogGP Performance Metrics

The LogP [10] model addresses the performance of a paraslel m
chine in terms of four parameters, as follows: [1¥ latency or
the upper bound on the time to transmit a message from itesour
to destination, (2p =overhead or the time period during which the
processor is busy sending or receiving a messageg,£3jap or the
minimum time interval between consecutive sends and rese{4)

on nodes with two independent processing elements, conpist

a DEC Alpha 21064 processor with a frequency of 150 MHz and
64MB of RAM. The memory interface between the Alpha proces-
sor and the local memory involves Cray customized circwitijch
extends the local virtual address space to a global addpes®s
Each processor can directly read and write to any other psmre
memory through the shared memory access library [8]. Caoke c
herence can be handled at the user’s discretion, the imeecd
interface hardware allows remote data entering a procsdsacal
memory to invalidate the corresponding cache line. The obst
routing data between nodes is essentially negligible, tyetes per
node traversed and one extra clock cycle to turn the correr.sih-

gle hop latency is 1-2 microseconds and the bandwidth is B26M
for the remote memory put operation and 60MB/s for the remote
memory get operation.

The Convex Exemplar 1600SP used in this paper is a shared
memory MP system based on HP PA-RISC chip configured in up to
16 hypernodes, each having up to 8 processors, an I/O pary@n
to 2 gigabytes of physical memory. Hypernodes are intereotaul
with 4 rings. The MPI layer used is Convex MPICH V1.0.12.1
and it is compatible with Argonne National Laboratory’s MM
V1.0.12. It can be programmed as a conventional shared nyemor
machine, or as a distributed memory message-passing neacitin
as a hybrid of both. The system we used is from the Swiss Center
for Scientific Computing and has two hypernodes, with a tofal
16 HP-PA 7200 CPUs.



[ Operation | Main type ] Mode [ Ends [ Buffer. | Other |
MPI_Send Blocking Standard ? ? Dependent on implementatio
MPI_Ssend | Blocking | Synchronous| Non-local No
MPI_Rsend | Blocking Ready Local No Matching receive must precede
MPI_Bsend | Blocking Buffered Local Yes May need MPIBuffer_attach
MPI_Isend | Non-block Standard Local ? Need MPLTest or MPLProbe
MPI_Issend | Non-block | Synchronous Local No Need MPLTest or MPLProbe
MPI_Irsend | Non-block Ready Local No Need MPLTest or MPLProbe
MPI_lbsend | Non-block Buffered Local Yes Need MPLTest or MPLProbe

Table 1: Summary of MPI poi

The network of workstations used is mainly a cluster of SPARC
stations. These are 8 workstations of Sun 4/50 SPARC stiRXn
with 16 MB RAM running SunOS 4.1.3. The workstations are
connected by an ordinary 10Mbit/s Ethernet. Table 2 shows th
processor, memory, and the communication interface of hireet
platforms.

3 Modeling MPI Performance

In this section we introduce different methods to model Méthe
munication performance. First, we use the LogGP model threc
on MPI primitives, ignoring the underlying protocols (arlis the
extra protocol messages) in MPI. This approximation is atha
geous because it allow us to give first order approximatiod an
comparison between platforms without considering macline
implementation specific details. It is also easy to use by N&RI
velopers because the LogGP metrics can be derived in siwélgs

on all platforms.

An extension of this model captures the underlying protecol
used in MPI operations, applying LogGP to model the lowdleve
asynchronous protocol messages instead. Because conatinmic
short messages typically do not require extra protocol agess
this model often can be reduced to the simple model mentioned
above. Similarly, when using large messages the cost od ext-
tocol messages can be ignored. The disadvantage of thisl isode
that the information about the exact protocols in MPI impderta-
tions is hard to obtain. Incorporating these details makeses in
models used by MPI designers.

Finally, we describe a new performance model for architestu
based on cluster of shared memory multiprocessors.

Note, that the performance results given in this paper aialyna
using the simple approach for the reasons described abovehé
Convex Exemplar we present the results based on the extensio
designed for cluster of shared memory multiprocessors.

3.1 A Simple Approach

The goal of a performance model is to present an abstract eiew
the system removing unnecessary details. A model thatrisgpilly
designed for MPI application programmers can be differesrfa
model targeted to MPI communication designers.

We believe that the LogGP model can directly model MPI prim-
itives, and that modeling the underlying protocols in MPhist
necessary if the model is targeted for application writ&scause
communicating short messages typically do not requireaguito-
tocol messages, there is no difference between the two séatel
short messages. Similarly, when using large messages sh®fto
extra protocol messages can be ignored compared to the @ser m
sage cost.

The only requirement for this approach is to distinguish be-
tween the send and receive overheads for different comratioic
styles as these overheads are very different.

Experimental M ethodology
This section shows the experimental methodology used taext

nt-to-point send operations

the LogGP performance parameters for MPI. In our experigjent
messages are exchanged between two processors. Thergceivi
processor returns the message back immediately to thers@&@ath

the sends and the receives are executed after a barrier tbiat fi
synchronizes the two processes involved. Non-blockingrmam
nications were tested with the test for completion (MPBteBor
buffered communication, MPI buffers were declared. Experits
were performed for different message lengths and pairs afgs-
sors/workstations. They were repeated at least 600 timeallon
platforms. The experiments have been repeated with theproet
cessor of the barrier operation changed from the senderetoeth
ceiver, to eliminate the performance impact of the barrjgzration
itself. The effects of instruction caching are eliminatgdrbnning

a couple of iterations of the the benchmark before measureme
are taken. The general structure of the pseudo-code is shrown
Figure 2.

The send overhead (O;):

Measuring the send overhead for local sends (all send types e
cept the synchronous) is done fayner11 in the micro-benchmark.
The overhead of the synchronous blocking send is dependeat o
matching receive operation, thus both the send and recedvisa
sued after a barrier operation.

Thereceive overhead (O, ):

Measuring the non-blocking receive overhead is done by unizes
the time around the receive operations. The results arénaota
with timer21. In the case of blocking receives we started both the
sends and receives after a barrier but we delayed the retcaiveke
sure that the idle time (synchronization) delay is not ideldiin the
receive overhead. The results we provide for the receiveheasl
are determined by the@mer12 in the micro-benchmark.
Thenetwork latency: L

Measuring the exact value of the latency with MPI is rathdr di
ficult due to differences in implementations and underlypngto-
cols used. The latency as defined in the LogP model is oftatehid
in the software send and receive overheads. The latencynpara
ter can be used to estimate the number of MPI operations ane ca
place between the non-blocking sends and the test for coiople
operations. In the followings we present a methodology tiorege
the network latency with MPI.

First, we estimated the time necessary for a receive operati
to be aware of a send after a blocking synchronous send was is-
sued on another processor (both started after a barriefk tifhe
can be used as an upper bound for a small message latency. It is
calculated by comparing the receive overhead {seer12) with
the receive time that also includes the wait time for the filestia
or protocol message to arrive from the sender (geer21). As
the MPI blocking synchronous send is a non-local operatias,
assumed that the operation would start with a protocol reijoe
message transfer in all the implementations. In [19] a berack
implemented with the Alpha assembler is presented for tlaetex
measurement of communication rates on the Cray T3D. Another
possibility would be to use the shared memory library [8]rfuea-
suring network latency.

Figure 3 shows the software overheads and network latency
for a communication pattern using a blocking synchronousise



[ Platform ] Processor | Memory/node|  Network Interface | Other |

CrayT3D | Alpha 21064, 150MHz 64MB Cray custom, 300MB/g Torus
NOW Sun4/50SPARC 16MB Ethernet, 10Mb/s SUNOS 4.1.3
Convex HP-PA-RISC7200 64MB crossbar for 16 CPU in
intra-hypernode 2 hypern.
CTl rings for
inter-hypernodes

Table 2: Comparison of the three platforms

Processor 1:
repeat for all types {

repeat 10 times { // elimnate instruction caching effects
Barrier
Send[type] to P2:
if (type is non-blocking) test_conpletion
Barrier
wait delta
Recei ve[type] from P2:
if (type is non-blocking) test_conpletion

}

repeat n tinmes { // neasure
Barrier
start timerll
Send[type] to P2:
stop tinerll => *send over head*
if (type is non-blocking) test_conpletion
Barrier
wait delta // wait enough for nessage to arrive
start timerl2
Recei ve[type] from P2
stop tinmerl2 => *recei ve overhead*
if (type is non-blocking) test_conpletion

}

Processor 2:
repeat for all types {
repeat 10 times { //elim nate instruction caching effects

Barrier
Recei ve[type] from P1:
if (type is non-blocking) test_conpletion
Barrier
Send[type] to P1:
if (type is non-blocking) test_conpletion

repeat n tines { // nmeasure

Barrier

start tinmer2l

Recei ve[type] from P1

stop timer21 // if (type is blocking synchronous) tiner 21
/1 measures the *receive overhead* plus *latency*
/1 for small messages

if (type is non-blocking) test_conpletion

Barrier

start timer22

Send[type] to P1:

stop tinmer22

if (type is non-blocking) test_conpletion

Figure 2: Pseudo-code for point-to-point benchmarking



receive pair implemented with the RTA protocol. The sofvar
overheads and latency with the non-blocking synchronond bat

a blocking receive is shown in Figure 4. In the case of theksloc
ing synchronous send, we can observe that the network latenc
completely overlapped with the send overhéad The reason for
presenting these figures is to illustrate the differenceveen the
blocking and non-blocking sends where communication ocests
be overlapped with useful computation. The number of messag
generated between the sender and receiver is dependerg proth
tocol used for the operation.

Processor B

Processor A

Time

Os Or L

HH A
% Send overhead IIIII II Receive overhead@ Latency

Figure 3: Software overheads and latency with a blocking syn
chronous send-receive pair implemented with the RTA pudtoc
Note, that the network latency is part of the blocking sendrov
head.
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‘ Processor A

Time
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Useful computatiol Test for completion Wait
P M P ke
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Figure 4: Software overheads and latency with non-blocleyrr

chronous send and blocking receive based on the RTA protocol

mance comparison for various message lengths and blockimg ¢
munications is presented in section 4.

[ MPI T L] 0s | oo Jg] G ]
Cray T3D| 31| 30-130(24-100) | 15-80] - [ 0.04
NOW 124 | 1000-1100(1000-1100) 1000 | - | 0.2

Table 3: LogGP signature for the standard non-blocking reode
and synchronous non-blocking modes on Cray T3D and NOW (in
u1S). The numbers in the parenthesis are for the non-blocking s
chronous case. The overheads shown regard 16 and 10000 byte
messages. The gap paramefecorresponds to peak communica-
tion bandwidths.

3.2 MPI Performance by Decomposition

More details about implementations of MPI can be captured by
modeling the underlying low-level operations. We expréssyter-
formance of MPI by decomposing the MPI operations into ba-
sic non-blocking messaging operations similar to Activesbages
[4]. These short messages typically reflect the size of nétwaput
and output queues. Additionally, extra protocol messagesised
to implement flow-control between the sender and the receie
objective of this section is only to show the methodology @fto
model these low level details.

We denote withT'P"°toc°! the time after which the sender can
continue with the execution of its next operation and Wifti* <!
the end to end message delivery time. If the two times arelequa
then we only showr’*" <",

The T protocol is typically used for asynchronous short mes-
sages and thus the message delivery time is given in a siwelar
asin LogP.

) = o, @
T, ,=0,+L+o, @
TheT A protocol is equivalent to a synchronous short message
transfer and it can be decomposed into two asynchronous mes-
sages, each having a send and receive overhead componént, an
a latency component.

T4 = 20, 4+ 2L + 20, (3)

The RT A protocol can be decomposed into two short protocol

This mode could be used for large messages to overlap the mesinessages, and one large message with/sizgtes. As theRT A

sage transfer time with useful computation.

Thegap: g

The gap is the minimal time interval between consecutivestras-
sions or receptions at a processor. It basically reflectptbees-
sor to network communication bandwidth. For fast, low-teesd
communication layers, such as Active Messages [4], the gap i
shown to be larger than the sum of the send and receive owdghea
MPI overheads for short messages are however so high, trat me
sages could be injected directly after they are constructdus,
the minimum distance between consecutive sends can bexappro
mated with a send overhead.

Gap per byte (G):

is using a pulling model (we assume hardware support sirtolar

the one in Cray T3D) for the large message it has no send cagrhe
component. The two send and receive overhead components are
included because of thR and AC K messages. The third latency
(L) component is accounting for the time required for the figgeb

of the M message to traverse the network. The rest of the 1)

bytes are pipelined and thus talde— 1)G time.

TETA = 90, + 2L 4 0, + (k — 1)G (4)

TE"™ = 90, + 3L + 20, + (k — 1)G (5)

The RAT protocol is using a push model for data transfer.
It has therefore an extra send overhead component compared t

The G parameter can be estimated by measuring the time around RT A. As the messag@/ is pushed into the destination memory,

a blocking receive overhead, extracting the non-blockieceive
overhead.

An overview of the LogGP performance signature on Cray T3D
and NOW for the non-blocking standard and synchronous misdes
shown in table 3. The performance signature of the Convextxe
plar 1600SP is presented in section 3.3. A more detailecbperf

we assume that no extra software processing is require@¢eiv-

ing it. Note, that we considered that the transfer rates@pililing

and the pushing methods are equal. The model can be extemded t
capture significantly different transfer rates.

74T = 40, + 3L 4 20, + (k — 1)G (6)



The end to end delivery time also includes the latency andehe
ceive overhead oiC K.
TEAT = 40, + AL + 30, + (k — 1)G (7)
Note, that for large message sizes the cost of communicition
dominated by thék —1)G term, thus the cost of protocol messages
could be ignored.

Synchronous gyle Asynchronous style
send: RAT protocol send
Buffer
g
(]
3 Buffer
= Check
8 Source
[ ] Copy
Sender Receiver Sender Receiver

Figure 5: Buffered vs synchronous communications. The R&T p
tocol shown in the figure is used for example in the implentgna
of the synchronous MPI send operation on Cray T3D.

3.3 MPI on Clusters of SMPs

LogGP was primarily designed for distributed memory maehin
with message-passing communication layers.

Clusters of shared memory multiprocessors typically rety o
low cost shared memory based communications within hyisio
and message-passing based inter-hypernode commungation

From figures 7 and 6, we observe that there is a factor of ten per
formance gap between inter- and intra-hypernode messags-tr
fers in the Convex Exemplar 1600SP. Similarly, the softwarer-
heads for intra-hypernode communication are much less ttan
inter-nypernode ones because they are based on simple shane-
ory primitives. This section presents a performance moaietvio
tiered systems callddoGH{sSP to account for these performance
gaps.

In theLoGH{sSH model, the choice of parameters reflects the two
kinds of inter-processor communicationTiAs:

e intra-hypernode, based on a messaging mechanism imple-

mented withshared memory accesses

e inter-hypernodes, based onessageand some kind of mes-
sage passing communication layer

We use the LogP latency model for inter-hypernode communi-
cation. We ignore the intra-hypernode latency as it is munchlker
than the inter-hypernode latency. We distinguish betwherséend
0s and receiven, overheads for inter-hypernode communication,
and the the send; and receives, overheads for intra-hypernode
communications. These overheads are differ for various dorRi-
munication styles. Our model for long messages assumethtrat
is some hardware support available for efficient long messags-
fer. We use separate parameters to model inter-hypernadsférs

1000

T

o=Inter-hypernodes overhead —— E
s=Intra-hypernode overhead --------

12}
-]
c
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(]
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(=]
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T
1 1 X,, 1 1 1 1
1 10 100 1000 10000 100000
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Figure 6: Comparison of inter and intra-hypernode standenat
blocking MPI send overheads on Convex. Variation of ovedsea
in function of message length is shown.

100.00 1/S=Intra-hypern. —— 1
1/G=Inter-hypern.
(8]
Q
£
€ 1000} 1
100 1 1 1 1 1 1
1 10 100 1000 10000 100000 1e+06
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Figure 7: Comparison ol /G inter-hypernode and /S intra-
hypernode bandwidth on Convex Exemplar SPP1600 as function
of message length.

(L] o [GJH] s [ S
[4-10] 30-200] 0.05] 2 [ 220 0.01

[ P ]
[ 4]

Table 4:LoGH{sSP signature for the Convex Exemplar with MPI

in us. The overheads shown regard 100 and 10000 byte messages.
The gap parametei$ and G correspond to peak inter-hypernode
and intra-hypernodes communication bandwidths.



| Platform | L ]

Cray T3D 3.1
Convex Exemplar| 4-10
NOW 124

Table 5: Network latency, on NOW, Cray T3d and Convex Ex- 100000

emplar (in microseconds). NOW (bl-synchronous)

CrayT3D (bl-synchronous) ----x-—--
NOW (bl-buffered) ---x---
CrayT3D (bl-buffered) = 1

10000

and intra-hypernode transfers. We model the long mesgag@er . o
byte for inter-hypernodaccesses witlir. We use the5 parameter é T .
for thegap per byte for intra-hypernodeommunications. 2 1000 s werem R -

The end to end delivery time of a large (non-blocking) messag & L
of sizek bytes (ignoring protocol messages) within a hypernode is .= Xﬁ
given by the following expression: 2 100 £ e g ]

[ B =}
Ts—p =85+ 8 +(k—1)S (8) o

Note, that we account for software overheads both at theeseumdi

the receiver but assume that the first byte of the messags teake

time to reach the destination. 1
The end to end delivery time of a large message of kikgtes

for inter-hypernode communication is:

! ! ! !

1 10 100 1000 10000 100000
Message length in bytes

Ty =0s+0,+(k—1)G+ L 9)
Figure 9: Comparison of blocking buffered and synchronou& M
The performance metrics for the Convex Exemplar using MPI send overheads. Note, that the blocking buffered mode &, loc
are summarized in Table 4. having a smaller overhead for short messages. Howeverargel
messages buffering becomes very expensive and the overasad

4 Performance Comparison comparable.

The network latency results obtained for the three platfoare
presented in Table 5.
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Figure 8: Send overheads in blocking and non-blocking syn- 1 . . . .
chronous modes on Cray T3D and NOW. Note, that the blocking 1 10 100 1000 10000 100000

synchronous mode is non-local. Variation in function of saeg Message length in bytes

size is shown.

Comparison graphs for the software overheads are presianted Figure 10: Comparison of blocking and non-blocking staddd4p!

Figures 8 to 11. _ send overheads. The performance gap between these modss giv
On the Cray T3D, the non-blocking send overheads show small 5, indication about overlapping chances at the sender.

variations in function of message length. This is in linehatihe
assumptions made in the LogP model for considering the asyn-
chronous send and receive overheads as constant. Thesrekult
tained for the standard non-blocking send are similar teehab-
tained with the non-blocking buffered mode.
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Figure 11: Comparison of blocking and nonblocking receivero 1 : : ;
heads. The difference between the two modes shows possible 1 10 100 1000 10000

L . . . Message length in bytes
communication overlapping for various message lengthsif-n

blocking mode is used at the receiver.

Figure 12: Comparison of standard non-blocking send owethie
On the NOW, the blocking synchronous mode for small mes- on Cray T3D, NOW and Convex Exemplar. Variation in function
sages is more expensive than the standard or buffered modes d of message length is shown.
to larger network latency. As expected, we can see that the sy
chronous mode is more advantageous in the case of very fast ne
works such as in the CrayT3D. The non-blocking send overhead
on the NOW show small variations, increasing by a factor af te
between 1-100000 bytes. The results obtained show tha¢ thes
overheads are larger by a factor of ten than those obtaineithdéo
CrayT3D.
The blocking receive overheads on the NOW suggest good com-
munication/computation overlapping possibilities forssages larger
than 1000 bytes. On the CrayT3D, it is advantageous to use non
blocking communication for messages larger than 500-13®6sb
in the case of send operations, and 2000 bytes in the casesdfee 1/G or network bandwidth
operations. 100.00
Figures 12 and 13 show the comparison of the standard non-
blocking send overhead and the network bandwidth for long-me
sages for all the three platforms. o 10.00
On the Convex Exemplar both the overheads and the long mes-
sage gaps are significantly larger for the inter-hyperndda the
intra-hypernode case. The Convex Exemplar intra-hypermooer-
heads are the lowest, the inter-hypernode overheads arelagtitly
larger than the CrayT3D overheads. Messages can be commun
cated fastest within the nodes of Convex Exemplar hypemode

se

1.00

Bandwidth in MB/!

Convex Intra-hypern ——

3 B Convex Inter-hypern ---- o
. 0.01 Cray T3D -
5 Conclusions NOW &

We expect MPI to be the high performance communication lager 0.00 : ' . ' ;
most massively parallel processors (MPPs) and NOW in thedut 1 10 100 | %QO% 10000 100000

In this paper, we used LogGP as a conceptual framework fou-eva Message length in bytes

ating the performance of MPI communications on three ptatfo

Cray-research T3D, Convex Exemplar 1600SP, and a network of

workstations. We have discussed how to model the perforenanc Figure 13: Comparison af /G parameters, corresponding to net-
of MPI by incorporating more details about the platform ahd t  work bandwidths for large messages on Cray T3D, NOW and Con-
protocols used. We have developed a simple set of commioricat vex Exemplar.

benchmarks to extract the performance parameters andnpeese

detailed measurements of the differences in communicatofor-

mance among the platforms. We found that modeling the perfor

mance gap between inter-cluster and intra-cluster megsaggng

is important. For the Convex Exemplar, the software ovelbeand



message transfer rates for inter-cluster communicatieffieantor of
ten larger than the inter-cluster ones. Our results showthieaVIPI
software overheads are very high and should be improved-in or
der to utilize the high speed bandwidth provided by the ulyder
hardware.
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